Nowcasting techniques

Alberto Caruso

a.caruso@confindustria.it

AIECE Fall meeting Bruxelles, November 2019

Outline

1 Introduction: the nowcasting problem

2 A nowcasting model

- 3 Example: Nowcasting Mexico
 - Introduction
 - Data
 - Estimation and out-of-sample evaluation
 - News analysis and conclusions

The Nowcasting problem

What's the state of the business cycle?

First attempt by Burns and Mitchell, pioneers in business cycle analysis at the National Bureau of Economic Research (NBER) in the late 1930s.

They "attacked their investigation as a big data problem: they scrutinized hundreds of data series in search for patterns and regularities. What they uncovered was a **systematic co-movement among the series** and pervasiveness of fluctuations across different sectors and different kinds of economic activities".

"Macroeconomic Nowcasting and Forecasting with Big Data", Brandyn Bok, Daniele Caratelli, Domenico Giannone, Argia Sbordone, and Andrea Tambalotti, Federal Reserve Bank of New York Staff Reports, no. 830, November 2017 Long tradition on indexes of economic activity such as the leading and coincident indicator indexes (OECD, The Conference Board, \dots)

Mainly based on Stock and Watson (1989), see Marcellino (2006) for a review.

Stock, James H. and Mark W. Watson, "New Indexes of Coincident and Leading Economic Indicators," in NBER Macroeconomics Annual 1989, Volume 4" NBER Chapters, 1989, pp. 351-409; Marcellino, Massimiliano, Chapter 16 Leading Indicators," Handbook of Economic Forecasting, 2006, 1, 879-960.

The Nowcasting problem

The Nowcasting problem

The real time problem: GDP data suffers of relevant publication lags... where do we stand? What is the current state of the economy?

The Nowcasting problem

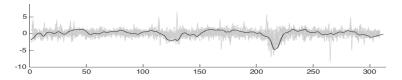
The real time problem: GDP data suffers of relevant publication lags... where do we stand? What is the current state of the economy?

Availability of a flow of macro data at higher frequencies... As in the judgemental process, interpret all the available information in real time!

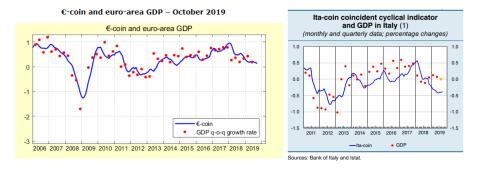
The Nowcasting problem

The real time problem: GDP data suffers of relevant publication lags... where do we stand? What is the current state of the economy?

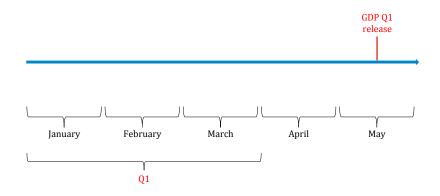
Availability of a flow of macro data at higher frequencies... As in the judgemental process, interpret all the available information in real time!

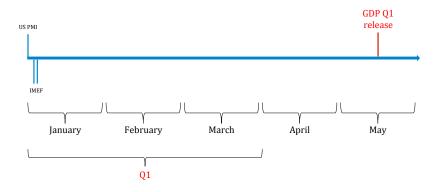

Extract the relevant information from a large dataset, as data gets released \rightarrow factor models separate the signal from the noise.

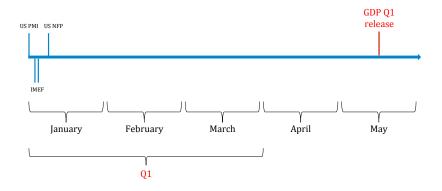
The Nowcasting problem

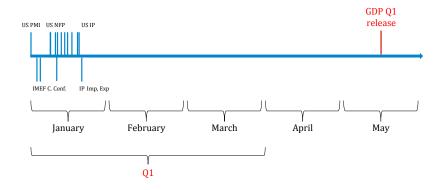

The real time problem: GDP data suffers of relevant publication lags... where do we stand? What is the current state of the economy?

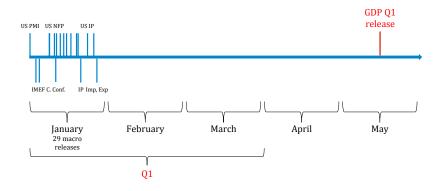
Availability of a flow of macro data at higher frequencies... As in the judgemental process, interpret all the available information in real time!

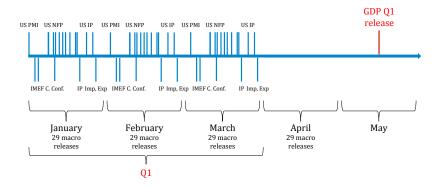

Extract the relevant information from a large dataset, as data gets released \rightarrow factor models separate the signal from the noise.

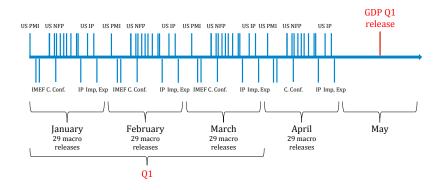



Examples: factor models in central banks




The modelling framework is in Altissimo et al. (2010), "New Eurocoin: Tracking economic growth in real time", The Review of Economics and Statistics, No. 92, 1024-1034; Aprigliano, V. and Bencivelli, L. (2013); Ita-coin: a new coincident indicator for the Italian economy. Bank of Italy Temi di Discussione (Working Paper) No, 935.]





23-Nov	Employment	Retail Sales	PMI	Nonfarm Payrolls
May	Х	Х	Х	Х
June	Х	Х	Х	Х
July	Х	Х	Х	Х
August	Х	Х	Х	Х
September	Х	Х	Х	Х
October	Х	Х	Х	Х
November	NaN	NaN	NaN	NaN
December	NaN	NaN	NaN	NaN

30-Nov	Employment	Retail Sales	PMI	Nonfarm Payrolls
May	Х	Х	Х	Х
June	Х	Х	Х	Х
July	Х	Х	Х	Х
August	Х	Х	Х	Х
September	Х	Х	Х	Х
October	Х	Х	Х	Х
November	NaN	NaN	Х	NaN
December	NaN	NaN	NaN	NaN

05-Dec	Employment	Retail Sales	PMI	Nonfarm Payrolls
May	Х	Х	Х	Х
June	Х	Х	Х	Х
July	Х	Х	Х	Х
August	Х	Х	Х	Х
September	Х	Х	Х	Х
October	Х	Х	Х	Х
November	Х	NaN	Х	NaN
December	NaN	NaN	NaN	NaN

07-Dec	Employment	Retail Sales	PMI	Nonfarm Payrolls
May	Х	Х	Х	Х
June	Х	Х	Х	Х
July	Х	Х	Х	Х
August	Х	Х	Х	Х
September	Х	Х	Х	Х
October	Х	Х	Х	Х
November	Х	NaN	Х	Х
December	NaN	NaN	NaN	NaN

Issues to handle:

• Potentially high-dimensional problem, large data sets

- Potentially high-dimensional problem, large data sets
- Mixed frequency

- Potentially high-dimensional problem, large data sets
- Mixed frequency
- Ragged edge

- Potentially high-dimensional problem, large data sets Factor models
- Mixed frequency
- Ragged edge

- Potentially high-dimensional problem, large data sets Factor models
- Mixed frequency Quarterly variables treated as monthly with missing values
- Ragged edge

- Potentially high-dimensional problem, large data sets Factor models
- Mixed frequency Quarterly variables treated as monthly with missing values
- Ragged edge Kalman Filter

Issues to handle:

- Potentially high-dimensional problem, large data sets Factor models
- Mixed frequency Quarterly variables treated as monthly with missing values
- Ragged edge Kalman Filter

See Giannone, Reichlin and Small (2008), Doz et al. (2011, 2012), Banbura and Modugno (2014), Banbura et al. (2013).

Examples: the New York Fed experience

[The modelling framework of the NY Fed Staff is the same that I have used for Mexico]

Nowcasting: applications

Examples in the literature (in "Macroeconomic Nowcasting and Forecasting with Big Data", Brandyn Bok, Daniele Caratelli, Domenico Giannone, Argia Sbordone, and Andrea Tambalotti, Federal Reserve Bank of New York Staff Reports, no. 830, November 2017)

See Giannone et al. (2008), Banbura et al. (2012), Lahiri and Monokroussos (2013), and Liebermann (2014) for nowcasting the United States; Angelini et al. (2011) and Banbura et al. (2011) for the aggregate euro area economy alongside Runstler et al. (2009) for individual member countries; and Bragoli (2017) for Japan. See Chernis and Sekkel (2017) for Canada; Aastveit and Trovik (2012) and Luciani and Ricci (2014) for Norway; Matheson (2010) for New Zealand; and Anesti et al. (2017) for the UK. See Dahlhaus et al. (2015) for BRIC countries and Mexico; Bragoli et al. (2015) for Brazil; Bragoli and Fosten (2016) for India; Yiu and Chow (2010) for China; Caruso (2015) for Mexico; Luciani et al. (2017) for Indonesia; and Kabundi et al. (2016) for South Africa.

Nowcasting: applications

Examples in the literature (in "Macroeconomic Nowcasting and Forecasting with Big Data", Brandyn Bok, Daniele Caratelli, Domenico Giannone, Argia Sbordone, and Andrea Tambalotti, Federal Reserve Bank of New York Staff Reports, no. 830, November 2017)

See Giannone et al. (2008), Banbura et al. (2012), Lahiri and Monokroussos (2013), and Liebermann (2014) for nowcasting the United States; Angelini et al. (2011) and Banbura et al. (2011) for the aggregate euro area economy alongside Runstler et al. (2009) for individual member countries; and Bragoli (2017) for Japan. See Chernis and Sekkel (2017) for Canada; Aastveit and Trovik (2012) and Luciani and Ricci (2014) for Norway; Matheson (2010) for New Zealand; and Anesti et al. (2017) for the UK. See Dahlhaus et al. (2015) for BRIC countries and Mexico; Bragoli et al. (2015) for Brazil; Bragoli and Fosten (2016) for India; Yiu and Chow (2010) for China; Caruso (2015) for Mexico; Luciani et al. (2017) for Indonesia; and Kabundi et al. (2016) for South Africa.

Alternative models and extensions

It is also possible to use VAR, or better BVAR (Sims, 1980; Doan et al., 1984), connected with factor models and suitable for the analysis of big data (De Mol et al., 2008; Banbura et al., 2010).

For a recent survey of BVAR, see Karlsson (2013) and Koop (2017).

BVARs are also suitable for nowcasting: they can be cast in a state-space form allowing for conveniently handling data in real time using filtering techniques, in the same way described for the factor model.

Extensions:

- Heterogeneity in the lead-lag relationships (D'Agostino et al., 2016)
- Time-varying parameters (Kim and Nelson, 2001)
- Time varying volatility (Marcellino et al., 2016)
- Time variation in the intercept (Antolin-Diaz et al., 2017)

Outline

Introduction: the nowcasting problem

2 A nowcasting model

- 3 Example: Nowcasting Mexico
 - Introduction
 - Data
 - Estimation and out-of-sample evaluation
 - News analysis and conclusions

Nowcasting: DFM and dimensionality reduction

$$x_t = \mu + \Lambda f_t + \epsilon_t \tag{1}$$

$$f_t = A_t f_{t-1} + \dots + A_p f_{t-p} + u_t; \ u_t \ i.i.d. \sim \mathcal{N}(0, Q)$$
(2)

- x_t: vector of standardized stationary monthly variables
- f_t : unobserved common factors following a VAR(p)
- Λ: factor loadings
- ϵ_t : vector of idiosyncratic components following an AR(1)

Nowcasting

Mixed frequency:

Quarterly variables are modelled as monthly variables with periodically missing values; see the approximation of Mariano and Murosawa (2003). We can assume that the unobserved MoM GDP growth rate has the same FM representation as the monthly variables.

Nowcasting

Mixed frequency:

Quarterly variables are modelled as monthly variables with periodically missing values; see the approximation of Mariano and Murosawa (2003). We can assume that the unobserved MoM GDP growth rate has the same FM representation as the monthly variables.

Estimation:

Maximum Likelihood: allows for autocorr. of idio. and restrictions, consistent and feasible even in case of an approximate factor model (Doz et al., 2012) and can cope with missing data and ragged edge (Banbura and Modugno, 2014).

EM algorithm

• Initialize using PC and OLS

- Initialize using PC and OLS
- Expectation step: the expected log-likelihood conditional on the data is calculated using the estimates from the previous iteration through Kalman filter

- Initialize using PC and OLS
- Expectation step: the expected log-likelihood conditional on the data is calculated using the estimates from the previous iteration through Kalman filter
- Maximization step: parameters are estimated maximizing the expected log-likelihood

- Initialize using PC and OLS
- Expectation step: the expected log-likelihood conditional on the data is calculated using the estimates from the previous iteration through Kalman filter
- Maximization step: parameters are estimated maximizing the expected log-likelihood
- Repeat up to convergence

Outline

Introduction: the nowcasting problem

2 A nowcasting model

3 Example: Nowcasting Mexico

- Introduction
- Data
- Estimation and out-of-sample evaluation
- News analysis and conclusions

Reference

Caruso, A. (2018). Nowcasting with the help of foreign indicators: The case of Mexico. Economic Modelling, 69, 160-168.

Outline

1 Introduction: the nowcasting problem

2 A nowcasting model

3 Example: Nowcasting Mexico

- Introduction
- Data
- Estimation and out-of-sample evaluation
- News analysis and conclusions

How do I choose the variables?

How do I choose the variables?

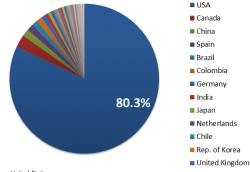
- Bloomberg calendar
- Reports from statistical office and central bank
- Media

Objectives

Objectives

• To reconstruct the data flow useful to assess Mexican economic conditions.

Objectives


- To reconstruct the data flow useful to assess Mexican economic conditions.
- To jointly analyse those data in a nowcasting model that is continuously updated as new data get released.

Objectives

- To reconstruct the data flow useful to assess Mexican economic conditions.
- To jointly analyse those data in a nowcasting model that is continuously updated as new data get released.
- To evaluate the relative importance of Mexican and US releases.

Introduction

Mexican exports by destination (2014)

Source: United Nations

Literature

On Mexico/US relationships:

- Evidence of synchronization of US and Mexican business cycles: Torres and Vela (2003), Hernandez (2004) and Mejía-Reyes and Campos-Chávez (2011)
- Impact of NAFTA: Cuevas et al. (2002), Kose et al. (2004), Chiquiar and Ramos-Francia (2005), Bayoumi and Swiston (2008) Miles and Vijverberg (2011)
- Spillovers from the US: Sosa (2008), documenting the major role of US IP and of indicators about the automotive sector.

Literature

On Mexico/US relationships:

- Evidence of synchronization of US and Mexican business cycles: Torres and Vela (2003), Hernandez (2004) and Mejía-Reyes and Campos-Chávez (2011)
- Impact of NAFTA: Cuevas et al. (2002), Kose et al. (2004), Chiquiar and Ramos-Francia (2005), Bayoumi and Swiston (2008) Miles and Vijverberg (2011)
- Spillovers from the US: Sosa (2008), documenting the major role of US IP and of indicators about the automotive sector.

On forecasting/nowcasting Mexican GDP:

- Coutino (2005): PC and macro model, no OOS evaluation
- Liu et al. (2012): DFM, find no improvements using external data
- Guerrero et al. (2013): VAR model for back-casting (15gg lag)

Data: The Variables

	Series	Source	Start date	Unit	Transf.	Lag
Mexico	IMEF Bus.Clim. Index: Mfg	IIEEM	Jan-04	INDEX	Level	3
Mexico	IMEF Bus.Clim. Index: Nonmfg	IIEEM	Jan-04	INDEX	Level	3
Mexico	Consumer Confidence	INEGI	Apr-01	INDEX	Level	4
Mexico	Producer Confidence Index	INEGI	Jan-04	Units	YoY	4
Mexico	Opinion Survey: Mfg. Orders	INEGI	Jan-04	INDEX	Level	4
Mexico	Total Vehicle Production	AMIA	Jan-91	Units	YoY	10
Mexico	Industrial Production	INEGI	Jan-91	INDEX	MoM	13
Mexico	Total Vehicle Exports	AMIA	Jan-91	Units	YoY	13
Mexico	Unemployment Rate	INEGI	Apr-00	%	M diff	22
Mexico	Petroleum Exports: Crude	INEGI	Jan-91	US\$	MoM	24
Mexico	Imports	INEGI	Jan-91	US\$	MoM	24
Mexico	Exports	INEGI	Jan-91	US\$	MoM	24
Mexico	Production of Crude Petroleum	INEGI	Jan-91	Units	MoM	26
Mexico	Automobile Sales	AMIA	Jan-91	Units	MoM	37
Mexico	Truck Sales: Total	AMIA	Jan-95	Units	YoY	37
Mexico	Retail Sales	INEGI	Jan-94	INDEX	MoM	52
Mexico	Gross Domestic Product	INEGI	Jan-91	Mil.Pesos	QoQ	55
Mexico	Trade Balance: United States	INEGI	Jan-93	US\$	YoY	57
US	UoM: Cons. Sentiment	Un. of Mich.	Jan-91	INDEX	Level	-3
US	Conference Board: Cons. Conf.	CB	Jan-91	INDEX	Level	-3
US	ISM Mfg: PMI Composite Index	ISM	Jan-91	INDEX	Level	1
US	Employees on Nonfarm Payrolls	BLS	Jan-91	Units	M diff	5
US	Retail Sales	CENSUS	Jan-91	US\$	MoM	13
US	Industrial Production	FRB	Jan-91	INDEX	MoM	16
US	Capacity Utilization	FRB	Jan-91	%	M diff	16
US	Housing Starts	CENSUS	Jan-91	Units	MoM	18
US	Wholesalers: Sales: Automotive	CENSUS	Jan-92	US\$	MoM	40
US	Car Imports	CENSUS	Jan-91	US\$	YoY	41
US	Truck Imports	CENSUS	Jan-91	US\$	YoY	41

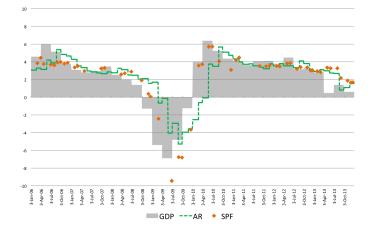
Data: Example of the calendar (May 2013)

Date	Country	Series	Average delay	Ref. Period	Bloomberg relevance
01-May	US	ISM Mfg: PMI Composite Index	1	April	94.7
02-May	Mexico	IMEF Index: Mfg	3	April	17.5
02-May	Mexico	IMEF Index: Nonmfg	3	April	12.5
02-May	US	Car Imports	41	March	
02-May	US	Truck Imports	41	March	
03-May	Mexico	Producer Confidence Index	4	April	
03-May	Mexico	Manufacturing Orders	4	April	
03-May	US	Employees on Nonfarm Payrolls	5	April	99.1
06-May	Mexico	Consumer Confidence	4	April	82.5
07-May	Mexico	Total Vehicle Production	10	April	37.5
07-May	Mexico	Total Vehicle Exports	13	April	30
08-May	Mexico	Automobile Sales	37	March	
08-May	Mexico	Truck Sales	37	March	
09-May	US	Automobile Sales	40	March	
10-May	Mexico	Industrial Production	43	March	92.5
13-May	US	Retail Sales	13	April	89.4
15-May	US	Industrial Production	16	April	86.7
15-May	US	Capacity Utilization	16	April	60.71
16-May	US	Housing Starts	18	April	88.5
24-May	Mexico	Unemployment rate	22	March	77.5
22-May	Mexico	Retail Sales	52	March	80
23-May	Mexico	Gross Domestic Product	55	2013 Q1	87.5
26-May	Mexico	Imports	24	April	75*
26-May	Mexico	Exports	24	April	75*
26-May	Mexico	Trade Balance: United States	57	March	
26-May	Mexico	Oil Exports	24	April	
26-May	Mexico	Oil Production	26	April	
28-May	US	Consumer Confidence	-3	May	95.6
31-May	US	Univ. of Michigan: Cons. Sentiment	-3	May	92.9

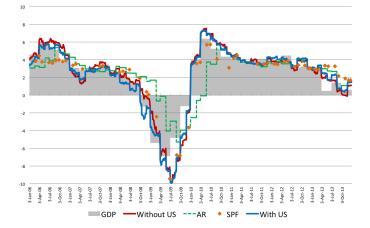
Outline

Introduction: the nowcasting problem

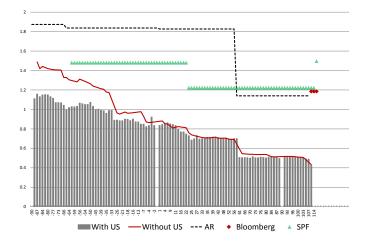
2 A nowcasting model

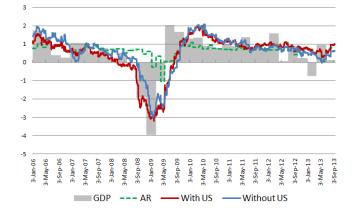

3 Example: Nowcasting Mexico

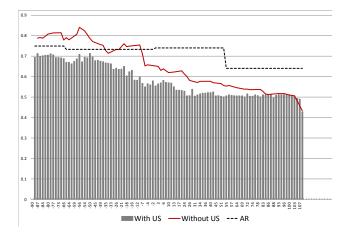
- Introduction
- Data
- Estimation and out-of-sample evaluation
- News analysis and conclusions

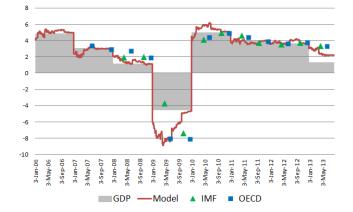

OOS Evaluation

- Pseudo out-of-sample exercise (reconstructing the calendar)
- Estimation starts in 1991
- Evaluation period: 2006Q1 2013Q4
- 1 factor, 2 lags (results are robust to changes in the specification)


OOS Evaluation: YoY


OOS Evaluation: YoY


OOS Evaluation: RMSFE YoY


OOS Evaluation: QoQ

OOS Evaluation: RMSFE QoQ

OOS Evaluation: Calendar year

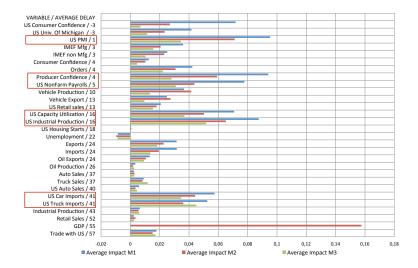
	DM stat	Backcast	Nowcast	Forecast
	Mex vs (Mex+US)	0.479	2.048	1.693
QoQ	AR vs (Mex+US) AR vs Mex	1.262 1.299	1.783 1.541	0.912 0.256
YoY	Mex vs (Mex+US) AR vs (Mex+US) AR vs Mex	0.479 2.271 2.267	1.496 3.403 3.354	1.971 3.379 3.231
101	SPF vs Mex SPF vs (Mex+US)	2.207	3.497 4.212	2.490 2.630

In the table the results of a Diebold-Mariano (1995) test of equal predictive accuracy. The model written as the second is the one whose forecast are tested to be more accurate in the alternative hypothesis (e.g.: A vs B, H_1 is that forecasts from B are more accurate than forecasts from A). "Mex" refers to the model with just Mexican variables; "Mex+US" to the model with all the variables; "AR" to the AR(1); "SPF" to the survey of professional forecasters (Bank of Mexico).

News analysis

Let y_t^Q be the GDP at time t, and Ω_{ν} the information set at time ν , where ν is a vintage of data. The nowcast is the projection of y_t^Q using the available data, $\mathbb{E}[y_t^Q | \Omega_{\nu}]$. At any release, the information set expands : $\Omega_{\nu} \subset \Omega_{\nu+1}$, and it is possible to decompose the new forecast in:

$$\underbrace{\mathbb{E}[y_t^Q | \Omega_{\nu+1}]}_{\text{new forecast}} = \underbrace{\mathbb{E}[y_t^Q | \Omega_{\nu}]}_{\text{old forecast}} + \underbrace{\mathbb{E}[y_t^Q | I_{\nu+1}]}_{\text{revision}}$$


Where $I_{\nu+1}$ is the information in $\Omega_{\nu+1}$ orthogonal to Ω_{ν} . Express the revision as:

$$\underbrace{\mathbb{E}[y_t^Q | \Omega_{\nu+1}] - \mathbb{E}[y_t^Q | \Omega_{\nu}]}_{\textit{revision}} = \sum_{j \in J_{\nu+1}} b_{j,t,\nu+1} \underbrace{(x_{i_j,t_j} - \mathbb{E}[(x_{i_j,t_j} | \Omega_{\nu})]}_{\textit{news}}$$

We can use this analysis to evaluate the average contribution of any release of interest.

In the present work, the analysis can be used to evaluate the average impact of US variables.

News analysis

Conclusions

Contributions

- I reconstruct the data flow monitored by the markets and use it in a model useful to nowcast Mexican GDP
- The model produces forecasts whose accuracy is similar to that of institutional and judgemental forecasts
- I document the importance of US variables to assess Mexican economic conditions